How do you factor completely #a^3 - 8#?
1 Answer
Jan 4, 2016
#a^3-8 = (a-2)(a^2+2a+4)#
#=(a-2)(a+1-sqrt(3)i)(a+1+sqrt(3)i)#
Explanation:
Use the difference of cubes identity, which can be written:
#A^3-B^3=(A-B)(A^2+AB+B^2)#
Note that both
So we find:
#a^3-8#
#=a^3-2^3#
#=(a-2)(a^2+(a)(2)+2^2)#
#=(a-2)(a^2+2a+4)#
The remaining quadratic factor has negative discriminant, so no Real zeros and no linear factors with Real coefficients. It is possible to factor it using Complex coefficients:
#a^2+2a+4#
#=a^2+2a+1+3#
#=(a+1)^2+3#
#=(a+1)^2-(sqrt(3)i)^2#
#= (a+1-sqrt(3)i)(a+1+sqrt(3)i)#
So:
#a^8-8 = (a-2)(a+1-sqrt(3)i)(a+1+sqrt(3)i)#
Another way to express the full factoring is:
#a^3-8 = (a-2)(a-2omega)(a-2omega^2)#
where