How do you implicitly differentiate #y = e^x y -x e^y#?

2 Answers
Jan 9, 2016

I found #(dy)/(dx)=(e^xy-e^y)/(1+xe^y-e^x)#

Explanation:

We consider #y# as a function of #x# and derive it as well to get:
#1(dy)/(dx)=e^xy+e^x(dy)/(dx)-e^y-xe^y(dy)/(dx)#
#(dy)/(dx)[e^x-xe^y-1]=e^y-e^xy#
#(dy)/(dx)=(e^xy-e^y)/(1+xe^y-e^x)#

Jan 9, 2016

# dy/dx = (ye^x - e^y )/(1 - e^x +xe^y ) #

Explanation:

differentiate using chain rule and product rule.

Differentiating with respect to x gives :

#dy/dx = e^x.d/dx(y)+y.d/dx(e^x) - (x.d/dx(e^y) + e^y.d/dx(x))#

# dy/dx = e^x dy/dx+ye^x - ( x.e^y .d/dx(y) + e^y.1 )#

# dy/dx = e^xdy/dx+ye^x - ( x.e^y.dy/dx + e^y )#

#dy/dx = e^xdy/dx +ye^x - xe^ydy/dx - e^y #

collecting# dy/dx# terms to left hand side gives :

#dy/dx - e^xdy/dx + xe^ydy/dx = ye^x - e^y #

# dy/dx( 1 -e^x + xe^y ) = ye^x - e^y #

# rArr dy/dx = (ye^x - e^y )/(1 - e^x + xe^y #