What is the derivative of #f(x)= log_3(3-2x)#?
1 Answer
Jan 9, 2016
Explanation:
Use the change of base formula to express
#f(x)=ln(3-2x)/ln3#
Thus,
To find the derivative of a natural logarithm function, use the chain rule:
#d/dx(ln(u))=1/u*u'#
Thus,
#f'(x)=1/ln3*1/(3-2x)*d/dx(3-2x)#
#=1/ln3*1/(3-2x)*-2#
#=(-2)/((3-2x)ln3)#
#=2/((2x-3)ln3)#