What is the second derivative of #f(x)= sin(sqrt(3x-7))#?
1 Answer
Explanation:
Finding the first derivative:
Use the chain rule (many times).
First Issue: the sine function.
#f'(x)=cos(sqrt(3x-7))*d/dx[sqrt(3x-7)]#
Second Issue: the square root.
#f'(x)=cos(sqrt(3x-7))*3/(2sqrt(3x-7))=color(blue)((3cos(sqrt(3x-7)))/(2sqrt(3x-7))#
Finding the second derivative:
Use the quotient rule (and more chain rule).
#f''(x)=(2sqrt(3x-7)color(green)(d/dx[3cos(sqrt(3x-7))])-3cos(sqrt(3x-7))color(red)(d/dx[2sqrt(3x-7)]))/(2sqrt(3x-7))^2#
Find each internal derivative separately:
#d/dx[3cos(sqrt(3x-7))]#
This will be almost identical to finding
#color(green)(d/dx[3cos(sqrt(3x-7))]=(-9sin(sqrt(3x-7)))/(2sqrt(3x-7))#
The other derivative is
#d/dx[2sqrt(3x-7)]#
This, again, will be twice what we determined earlier, since we've basically already done this differentiation.
#color(red)(d/dx[2sqrt(3x-7)]=3/sqrt(3x-7)#
Plug these back in.
#f''(x)=((2sqrt(3x-7)(-9sin(sqrt(3x-7))))/(2sqrt(3x-7))-(9cos(sqrt(3x-7)))/sqrt(3x-7))/(4(3x-7))#
Further simplification yields:
#f''(x)=(-9(sqrt(3x-7)sin(sqrt(3x-7))+cos(sqrt(3x-7))))/(4(3x-7)^(3/2)#