How do you find all the real and complex roots of #z^7+z^4+4z^3+4=0#?
1 Answer
Jan 19, 2016
Explanation:
Factor by grouping:
#z^4(z^3+1)+4(z^3+1)=0#
#(z^4+4)(z^3+1)=0#
First,
#(z^4+4)(z+1)(z^2-z+1)=0#
The other part,
#z^4+4=(z^4+4z^2+4)-4z^2#
#color(white)(xxxx)=(z^2+2)^2-(2z)^2#
#color(white)(xxxx)=(z^2+2z+2)(z^2-2z+2)#
Now, we have
#(z^2+2z+2)(z^2-2z+2)(z+1)(z^2-z+1)=0#
Solving each of these via the quadratic formula or completing the square gives the seven distinct values of
#z=-1,-1+-i,1+-i,1/2+-sqrt3/2i#