How do you use the definition of a derivative to find the derivative of #G(t)= (4t)/(t+1)#?
1 Answer
Jan 24, 2016
The limit definition of a derivative states that
#G'(t)=lim_(hrarr0)(G(t+h)-G(t))/h#
Since
#G'(t)=lim_(hrarr0)((4t+4h)/(t+h+1)-(4t)/(t+1))/h#
Multiply the numerator and denominator by
#=lim_(hrarr0)((4t+4h)/(t+h+1)-(4t)/(t+1))/h*((t+h+1)(t+1))/((t+h+1)(t+1))#
#=lim_(hrarr0)((4t+4h)(t+1)-4t(t+h+1))/(h(t+h+1)(t+1))#
Distribute.
#=lim_(hrarr0)(4t^2+4t+4ht+4h-4t^2-4ht-4t)/(h(t+h+1)(t+1))#
#=lim_(hrarr0)(4h)/(h(t+h+1)(t+1))#
#=lim_(hrarr0)4/((t+h+1)(t+1))#
Now we can evaluate the limit by plugging in
#=4/((t+1)(t+1))#
#G'(t)=4/(t+1)^2#