How do you find the derivative using quotient rule of #[x(3x+5)] / (1-x^2)#?
1 Answer
Jan 24, 2016
#f'(x)=(5x^2+6x+5)/(1-x^2)^2#
Explanation:
First, simplify the numerator.
#f(x)=(3x^2+5x)/(1-x^2)#
Now, according to the quotient rule,
#f'(x)=((1-x^2)d/dx(3x^2+5x)-(3x^2+5x)d/dx(1-x^2))/(1-x^2)^2#
Find each derivative through the power rule.
#f'(x)=((1-x^2)(6x+5)-(3x^2+5x)(-2x))/(1-x^2)^2#
Distribute and simplify.
#f'(x)=(-6x^3-5x^2+6x+5+6x^3+10x^2)/(1-x^2)^2#
#f'(x)=(5x^2+6x+5)/(1-x^2)^2#