If #log_b 5 = .41#, what is #log_b 125#?

1 Answer
Jan 29, 2016

#1.23#

Explanation:

Note that #125=5^3#.

Thus,

#log_b(125)=log_b(5^3)#

We can now simplify this using the rule: #log_b(a^c)=c*log_b(a)#

#log_b(5^3)=3*log_b(5)#

Since #log_b(5)=0.41#, we know that

#3*log_b(5)=3*0.41=1.23#