What is the standard form of #y= (x+x^2)(6x-3) -(2x+2)^3#?

1 Answer
Jan 31, 2016

See explanation...

Explanation:

#y=(x+x^2)(6x-3)-(2x+2)^3#

Multiply #x+x^2# and #6x-3# using Foil method

So,
#(x+x^2)(6x-3)=6x^2-3x+6x^3-3x^2=3x^2-3x+6x^3#

To,simplify #(2x+2)^3# Use the formula(Binomial expansion) #a^3+3a^2b+3ab^2+b^3#

#(2x+2)^3=8x^3+24x^2+24x+8#

Watch this video to now about the binomial expansion:

So,

#y=(3x^2-3x+6x^3)-(8x^3+24x^2+24x+8)#

Change the signs,

#rarry=3x^2-3x+6x^3-8x^3-24x^2-24x-8#

#rarry=-21x^2-3x+6x^3-8x^3-24x-8#

#rarry=-21x^2-27x+6x^3-8x^3-8#

#rarry=-21x^2-27x-2x^3-8#

In Standard form:

#rarry=-2x^3-21x^2-27x-8#