How do you simplify #(9sqrt 2)/( 6sqrt 18)#?

2 Answers
Feb 1, 2016

Factor all the numbers as far as possible (#sqrt(2)# cannot be factored) and then cancel any terms which appear on top and bottom.

Explanation:

#(9sqrt(2))/(6sqrt(18)#

#=(3*3sqrt(2))/(3*2sqrt(3*3*2))#

#=(3*3sqrt(2))/(3*2*3sqrt(2))#

#=(cancel(3)*cancel(3)cancel(sqrt(2)))/(cancel(3)*2*cancel(3)*cancel(sqrt(2)))#

#=1/2#

Feb 1, 2016

# 1/2 #

Explanation:

first simplify #sqrt18 = sqrt(9 xx 2) =sqrt9 xxsqrt2 = 3sqrt2 #

making use of : #sqrta xx sqrtb =sqrtab hArr sqrtab=sqrtaxxsqrtb#

#( 9sqrt2)/(6sqrt18) =( 9sqrt2)/(6xx3sqrt2) #

# =( 9cancel(sqrt2))/(18cancel(sqrt2)) = 9/18 = 1/2 #