How do you simplify #cos (x+pi/6)+sin(x-pi/3)#?

1 Answer
Feb 2, 2016

0

Explanation:

Using the following trigonometric identities :

#• cos (A + B ) = cosAcosB - sinAsinB .........(1) #

#• sin (A - B ) = sinAcosB - cosAsinB ...........(2)#

Applying these to the question :

from(1) : # cos(x + pi/6 ) = cosxcos(pi/6) - sinxsin(pi/6)#

and using exact values: # =cosx .sqrt3/2 - sinx . 1/2 .......(a)#

from (2) : # sin(x-pi/3 ) = sinxcos(pi/3) - cosxsin(pi/3)#

using exact values : # = sinx1/2 - cosx.sqrt3/2........(b) #

combining (a) and (b)

# sqrt3/2 cosx - 1/2 sinx + 1/2 sinx - sqrt3/2 cosx = 0#