How do you use the definition of a derivative to find the derivative of #f(x) = x + sqrtx#?
1 Answer
Explanation:
The definition of a derivative is
#f'(x) = lim_(h->0) (f(x+h) - f(x))/h #
# = lim_(h->0) ((x+h + sqrt(x+h)) - (x + sqrt(x)))/h#
# = lim_(h->0) (cancel(x) + h + sqrt(x + h) - cancel(x) - sqrt(x))/h#
# = lim_(h->0) (h + sqrt(x + h) - sqrt(x))/h#
# = lim_(h->0) (h/h + (sqrt(x + h) - sqrt(x))/h)#
# = lim_(h->0) 1 + lim_(h->0) (sqrt(x + h) - sqrt(x))/h#
... expand the fraction so that you can use the formula
# = 1 + lim_(h->0) ((sqrt(x + h) - sqrt(x))* color(blue)((sqrt(x + h) + sqrt(x))))/(h * color(blue)((sqrt(x + h) + sqrt(x))))#
# = 1 + lim_(h->0) " "((sqrt(x+h))^2 - (sqrt(x))^2)/(h * (sqrt(x + h) + sqrt(x)))#
# = 1 + lim_(h->0) " "(x + h - x)/(h * (sqrt(x + h) + sqrt(x)))#
# = 1 + lim_(h->0) " "cancel(h)/(cancel(h) * (sqrt(x + h) + sqrt(x)))#
# = 1 + lim_(h->0) " "1/(sqrt(x + h) + sqrt(x))#
At this point, you can safely plug
# = 1 + 1/(sqrt(x) + sqrt(x))#
# = 1 + 1/(2sqrt(x))#
Hope that this helped!