What is the antiderivative of #arcsin(x)#?

1 Answer
Feb 12, 2016

#intarcsin(x)dx = xarcsin(x) + sqrt(1-x^2) + C#

Explanation:

We will be using several techniques to evaluate the given integral.

First, we use substitution :

Let #t = arcsin(x) => sin(t) = x#
Then #dx = cos(t)dt#

Making the substitution, we have

#int arcsin(x)dx = int tcos(t)dt#

#color(white)#

Next, we use integration by parts:

Let #u = t# and #dv = cos(t)dt#
Then #du = dt# and #v = sin(t)#

Applying the integration by parts formula #intudv = uv - intvdu#

#inttcos(t)dt = tsin(t) - intsin(t)dt#

#=tsin(t) - (-cos(t)) + C#

#=tsin(t)+cos(t)+C#

Finally, we substitute #x# back in. To see why #cos(t) = sqrt(1-x^2)# try drawing a right triangle in which #sin(t) = x#.

#intarcsin(x)dx = xarcsin(x)+sqrt(1-x^2)+C#