What is #int 1/(1+4x^2) dx#?

1 Answer
Feb 16, 2016

1/2tan^-1(2x)+C

Explanation:

Start with the trig identity:

#sin^2theta+cos^2theta=1#

If we divide this by #cos^2theta# we get

#sin^2theta/cos^2theta+ cos^2theta/cos^2theta=1/cos^2theta#

#->tan^2theta +1 = sec^2theta#

For integral, we can try the substitution:

#2x = tan(u)# From this we get:
#-> 2dx = sec^2(u) du#

Now putting this substitution into the integral:

#int1/(1+4x^2)dx=1/2int sec^2(u)/(1+tan^2(du))du#

Now using the trig identity on the bottom of the fraction we get:

#1/2intsec^2(u)/sec^2(u)du = 1/2int du#
Integrating then reversing the substitution gives us:

#=1/2u+C=1/2tan^-1(2x)+C#