What is the standard form of #y= (2/5x^2-1/12)(1/3x+5/8) #?

2 Answers
Feb 16, 2016

#y=2x^3/15+x^2/4-x/36-5/96#

Explanation:

use the distribution property of multiplication over addition

#y=2/5x^2*(1/3x+5/8)-1/12*(1/3x+5/8)#
#y=2x^3/15+10x^2/40-x/36-5/96#

simplify some of the fractions to get

#y=2x^3/15+x^2/4-x/36-5/96#

hope it helps.. feel free to ask questions if you have any

Feb 16, 2016

#(2/15)x^3+(1/4)x^2-(1/36)x-5/96#

Explanation:

As #y=(2/5x^2−1/12)(1/3x+5/8)# is multiplication of one quadratic expression and one linear expression and hence of the form #ax^3+bx^2+cx+d#.

So, multiplying #y=(2/5x^2−1/12)(1/3x+5/8)# i.e.

#(2/5*1/3)x^3+(2/5*5/8)x^2-(1/12*1/3)x-(1/12*5/8)#

= #(2/15)x^3+(1/4)x^2-(1/36)x-5/96#