If #(a-b)^2=40# and #ab=8#, what is #a^2+b^2#?
2 Answers
Feb 23, 2016
56
Explanation:
distribute
#(a - b )^2" using FOIL (or any method you use) "#
#(a - b )^2 = a^2 - 2ab + b^2 = 40 # ( substitute ab = 8 )
hence
#a^2 - 2(8) + b^2 = 40 → a^2 - 16 + b^2 = 40#
#rArr a^2 - 16 + b^2 = 40 rArr a^2 + b^2 = 40 + 16 = 56 #
Feb 23, 2016
Explanation:
Remember the formula
So replace
We know that
So,replace
Add 16 both sides
We get,