Using the limit definition, how do you find the derivative of # f(x)=cosx #?

1 Answer

The classical definition of the derivative is

#(df(x))/dx=lim_(h->0)[f(x+h)-f(x)]/h#

where #f(x)=cosx# and #f(x+h)=cos(x+h)#

hence we have that

#(df(x))/dx=lim_(h->0)[f(x+h)-f(x)]/h=> (df(x))/dx=lim_(h->0)[cos(x+h)-cosx]/h=> (df(x))/dx=lim_(h->0)[[cosx*cosh-sinx*sinh]-cosx]/h=> (df(x))/dx=lim_(h->0)[(cosx(cosh-1))/h-sinx*sinh/h]=> (df(x))/dx=lim_(h->0)[(cosx(cosh-1))/h]-lim_(h->0)[sinx*sinh/h]#

But we know that #lim_(h->0)[((cosh-1))/h]=0# and
#lim_(h->0)(sinh/h)=1#

Hence

#(df(x))/dx=lim_(h->0)[(cosx(cosh-1))/h]-lim_(h->0)[sinx*sinh/h]#

#(df(x))/dx=lim_(h->0)(cosx)*lim_(h->0)(cosh-1)/h-lim_(h->0)(sinx)*lim_(h->0)sinh/h#

#(d(f(x)))/dx=cosx*0-sinx*1=> (d(f(x)))/dx=-sinx#

Finally #(dcosx)/dx=-sinx#