Let be #f(x) = 2x sin(4x)#.
We want to find #int 2x sin(4x) dx#. We know the integral of the function #sin# or #cos# so it would be good for us to get rid of #2x# by differentiating it.
Let's say #g(x) = 2x# and #h'(x) = sin(4x)#.
So #g'(x) = 2# and #h(x) = (-1)/4 cos(4x)#.
#int g(x) h'(x) dx = g(x)h(x) - int g'(x) h(x) dx# using integration by parts.
#int 2x sin(4x) dx = 2x*(-1)/4 cos(4x) - int 2 *(-1)/4 cos(4x) dx#
#=(-1)/2x cos(4x) + 1/2 int cos(4x) dx#
#=(-1)/2x cos(4x) + 1/2 * 1/4 sin(4x)#
#=(-1)/2x cos(4x) + 1/8 sin(4x)#
Therefore, #int 2x sin(4x) dx = (-1)/2x cos(4x) + 1/8 sin(4x) + C#, where #C# is the constant of integration.