What is the value of the #sum_(i=1)^n(2i^2 + i - 8)#?

1 Answer
Feb 28, 2016

#sum_(i=1)^n(2i^2+i-8) = 2/3n^3+3/2n^2-43/6n#

Explanation:

We will use the formulas for the sum of the first #n# natural numbers and the sum of the squares of the first #n# natural numbers:

  • #sum_(i=1)^ni = (n(n+1))/2#

  • #sum_(i=1)^ni^2 = (n(n+1)(2n+1))/6#

Then we have

#sum_(i=1)^n(2i^2+i-8) = sum_(i=1)^n2i^2+sum_(i=1)^ni+sum_(i=1)^n(-8)#

#=2sum_(i=1)^ni^2+sum_(i=1)^ni-sum_(i=1)^n8#

#=2(n(n+1)(2n+1))/6 + (n(n+1))/2 - 8n#

(at this point we simply perform some basic algebra to simplify)

#=2/3n^3+n^2+1/3n+1/2n^2+1/2n-8n#

#=2/3n^3+3/2n^2-43/6n#