How do you differentiate #f(x)= x^2/ (lnx)# twice using the quotient rule?
1 Answer
Explanation:
The quotient rule states that
#d/dx(g(x)/(h(x)))=(h(x)g'(x)-g(x)h'(x))/(h(x))^2#
So, for
#g(x)=x^2#
#h(x)=lnx#
Differentiate both of these:
#g'(x)=2x#
#h'(x)=1/x#
Plugging these both in, we see that
#f'(x)=(lnx(2x)-x^2(1/x))/(ln^2x#
Which simplifies to be
#f'(x)=(2xlnx-x)/ln^2x#
We can apply the quotient rule to this again to find the second derivative. We will redefine our functions being divided:
#g(x)=2xlnx-x#
#h(x)=ln^2x#
However, this time, finding
The
We see that
#g'(x)=lnxd/dx(2x)+2xd/dx(lnx)-1#
#g'(x)=lnx(2)+2x(1/x)-1#
#g'(x)=2lnx+1#
Finding
#h'(x)=2lnxd/dx(lnx)=2lnx(1/x)=(2lnx)/x#
Thus, we see that
#g(x)=2xlnx-x#
#h(x)=ln^2x#
#g'(x)=2lnx+1#
#h'(x)=(2lnx)/x#
Hence the second derivative equals
#f''(x)=(ln^2x(2lnx+1)-(2xlnx-x)(2lnx)/x)/ln^4x#
Expanding completely, this equals
#f''(x)=(2ln^3x+ln^2x-4ln^2x+2lnx)/ln^4x#
Combining the
#f''(x)=(2ln^2x-3lnx+2)/ln^3x#