How do you find the inverse of #"A"=((5, 8), (17, 3))#?
1 Answer
Mar 1, 2016
Explanation:
The inverse of the matrix
#"A"=((a,b),(c,d))#
is equal to
#"A"^-1=1/("det A")((d,-b),(-c,a))#
Note that
#"A"^-1=1/(ad-bc)((d,-b),(-c,a))#
For the matrix
#"A"=((5,8),(17,3))#
we have
#{(a=5),(b=8),(c=17),(d=3):}#
so
#"A"^-1=1/(5(3)-17(8))((3,-8),(-17,5))#
#"A"^-1=-1/121((3,-8),(-17,5))#
#"A"^-1=((-3/121,8/121),(17/121,-5/121))#