How do you evaluate sin((23pi)/6) ? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer Sidharth Mar 3, 2016 sin ((23pi)/6) = -1/2 Explanation: sin ((23pi)/6) = sin (690) = sin (2*360 - 30)= sin (-30) = - sin30 sin 30 = 1/2 =>sin 690 = -1/2 Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for 140^\circ? How do you find the value of cot 300^@? What is the value of sin -45^@? How do you find the trigonometric functions of values that are greater than 360^@? How do you use the reference angles to find sin210cos330-tan 135? How do you know if sin 30 = sin 150? How do you show that (costheta)(sectheta) = 1 if theta=pi/4? See all questions in Trigonometric Functions of Any Angle Impact of this question 9911 views around the world You can reuse this answer Creative Commons License