How do you integrate #int x^2 e^(4-x) dx # using integration by parts?
1 Answer
Mar 5, 2016
Explanation:
For integration by parts it's used this scheme:
#int udv=uv-int vdu#
Making
Then the original expression becomes
Applying integration by parts to
#int xe^(4-x)dx#
Making
#dv=e^(4-x)dx# =>#v=-e^(4-x)#
#u=x# =>#du=dx#
We get
#=x(-e^(4-x))-int e^(4-x)dx=-xe^(4-x)+e^(4-x)#
Using the partial results in the main expression, we get