How do you integrate #int x^2 e^(4-x) dx # using integration by parts?

1 Answer
Mar 5, 2016

#-x^2e^(4-x)-2xe^(4-x)+2e^(4-x)+const.#

Explanation:

For integration by parts it's used this scheme:

#int udv=uv-int vdu#

Making
#dv=e^(4-x)dx# => #v=-e^(4-x)#
#u=x^2# => #du=2xdx#
Then the original expression becomes
#=x^2(-e^(4-x))-int -e^(4-x)2xdx=-x^2e^(4-x)+2int xe^(4-x)dx#

Applying integration by parts to #int xe^(4-x)dx#
Making
#dv=e^(4-x)dx# => #v=-e^(4-x)#
#u=x# => #du=dx#
We get
#=x(-e^(4-x))-int e^(4-x)dx=-xe^(4-x)+e^(4-x)#

Using the partial results in the main expression, we get
#=-x^2e^(4-x)+2(-xe^(4-x)+e^(4-x))#
#=-x^2e^(4-x)-2xe^(4-x)+2e^(4-x)+const.#