Given that #log_2x + log_2(2x+7) = log_2A#, what is the expression for #A# in terms of #x#?

1 Answer
Mar 8, 2016

#A = 2x^2+7x#

Explanation:

We will use the following:
- #log_a(x)+log_a(y)=log_a(xy)#
- #a^(log_a(x)) = x#

#log_2(x) + log_2(2x+7) = log_2(A)#

#=>log_2(x(2x+7)) = log_2(A)#

#=>2^(log_2(x(2x+7)))=2^(log_2(A))#

#=>x(2x+7) = A#

#:. A = 2x^2+7x#