How do you use the quotient rule to differentiate #f(x)= (-4x)/ (x^2 - 1) ^2#?
1 Answer
Mar 8, 2016
Explanation:
Using the
#color(blue)" Quotient rule "# If
# f(x)=g(x)/(h(x)) " then " f'(x) =(h(x).g'(x)-g(x).h'(x))/(h(x)^2)# and
#color(red)" chain rule "#
#d/dx[f(g(x))] = f'(g(x)). g'(x)#
#"-------------------------------------------------------------------------"# here g(x) = - 4x → g'(x) = - 4
and h(x)
#=(x^2-1)^2 rArr h'(x) =2(x^2-1) d/dx(x^2-1)=4x(x^2-1)# substitute these results into f'(x) above:
#f'(x) =((x^2-1)^2.(-4) - (-4x).4x(x^2-1))/(x^2-1)^4#
#=(-4(x^2-1)^2 + 16x^2(x^2-1))/(x^2-1)^4#
#=( (x^2-1) [ -4(x^2-1) + 16x^2))/(x^2-1)^4#
#=(cancel(x^2-1) (12x^2 + 4))/(cancel(x^2-1) (x^2-1)^3)=(12x^2+4)/(x^2-1)^3#