How do you express #cos theta - cos^2 theta + sec theta # in terms of #sin theta #?

1 Answer

#sqrt(1-sin^2 theta)-(1-sin^2 theta)+1/sqrt(1-sin^2 theta)#
just simplify it further if you need to.

Explanation:

From the given data:
How do you express #cos theta−cos^2 theta+sec theta# in terms of
#sin theta#?

Solution:

from the fundamental trigonometric identities

#Sin^2 theta+Cos^2 theta=1#
it follows

#cos theta=sqrt(1-sin^2 theta)#

#cos^2 theta=1-sin^2 theta#

also

#sec theta=1/cos theta#

therefore

#cos theta−cos^2 theta+sec theta#

#sqrt(1-sin^2 theta)-(1-sin^2 theta)+1/sqrt(1-sin^2 theta)#

God bless...I hope the explanation is useful.