Question #028d7
1 Answer
Mar 10, 2016
Explanation:
Supposing
with
For
Dividing
#f(x-a)/(-(x-a))=((sum_0^n a_i*(x-a)^n))/(-(x-a))#
#=(a_0+sum_1^n a_i*(x-a)^n)/(-(x-a))#
#=a_0/(a-x)-sum_1^n a_i*(x-a)^(n-1)=a_0/(a-x)-a_1-a_2*x-...-a_n*x^(n-1)#
So#a_0# is the remainder of the division by#(a-x)# .
But, as we saw above,#a_0=f(X=0)#
=> alternative#(a)#