What is the slope of the line normal to the tangent line of #f(x) = 1/(x^2-2x+4) # at # x= 3 #?

1 Answer
Mar 12, 2016

slope of the Normal to the tangent at x=3 is #-1/f^'(3)=49/4#

Explanation:

First find #f^'(x)# and then find its value putting x= 3

#f^'(x)=d/(dx)(x^2-2x+4)^-1#
#=-(x^2-2x+4)^-2d/(dx)(x^2-2x+4)#
#=-(x^2-2x+4)^-2(d/(dx)(x^2)-2d/(dx)(x)+d/(dx)(4)))#
#=-(x^2-2x+4)^-2(2x-2)#
#:.f^'(x)=-(x^2-2x+4)^-2(2x-2)#
#:.f^'(3)=-(3^2-2*3+4)^-2(2*3-2)=-4/49#

Hence slope of the tangent at x=3 is #f^'(3)=-4/49#

slope of the Normal to the tangent at x=3 is #-1/f^'(3)=49/4#