What is the cross product of #[-1,-1,2]# and #[1,-2,3] #?
1 Answer
Explanation:
We know that
So for of the unit vectors
#color(white)( (color(black){hati xx hati = vec0}, color(black){qquad hati xx hatj = hatk}, color(black){qquad hati xx hatk = -hatj}), (color(black){hatj xx hati = -hatk}, color(black){qquad hatj xx hatj = vec0}, color(black){qquad hatj xx hatk = hati}), (color(black){hatk xx hati = hatj}, color(black){qquad hatk xx hatj = -hati}, color(black){qquad hatk xx hatk = vec0}))#
Another thing that you should know is that cross product is distributive, which means
#vecA xx (vecB + vecC) = vecA xx vecB + vecA xx vecC# .
We are going to need all of these results for this question.
#[-1,-1,2] xx [1,-2,3] #
#= (-hati - hatj + 2hatk) xx (hati - 2hatj + 3hatk)#
#= color(white)( (color(black){-hati xx hati - hati xx (-2hatj) - hati xx 3hatk}), (color(black){-hatj xx hati - hatj xx (-2hatj) - hatj xx 3hatk}), (color(black){+2hatk xx hati + 2hatk xx(-2hatj) + 2hatk xx 3hatk}) )#
#= color(white)( (color(black){- 1(vec0) + 2hatk qquad + 3hatj}), (color(black){+hatk qquad + 2(vec0) - 3hati}), (color(black){qquad +2hatj qquad + 4hati qquad + 6(vec0)}) )#
#= hati + 5hatj + 3hatk#
#= [1,5,3]#