How do you rationalize the denominator and simplify #5/(sqrt[3] – sqrt[5])#?
1 Answer
Mar 17, 2016
#5/(sqrt(3)-sqrt(5))=-5/2(sqrt(3)+sqrt(5))#
Explanation:
Multiply both numerator and denominator by
#5/(sqrt(3)-sqrt(5))#
#=(5(sqrt(3)+sqrt(5)))/((sqrt(3)-sqrt(5))(sqrt(3)+sqrt(5))#
#=(5(sqrt(3)+sqrt(5)))/((sqrt(3))^2-(sqrt(5))^2)#
#=(5(sqrt(3)+sqrt(5)))/(3-5)#
#=(5(sqrt(3)+sqrt(5)))/(-2)#
#=-5/2(sqrt(3)+sqrt(5))#