What is the integral of #int [x * cos(x^2)](dx)#? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer P dilip_k · Jim H Mar 19, 2016 #=1/2sin(x^2)+C# Explanation: Let #z=x^2# then #=>dz=2xdx# substituting #xdx=(dz)/2 and x^2=z# we have #I=1/2intcos(z)dz=1/2sinz +C=1/2sin(x^2)+C# Answer link Related questions How do I evaluate the indefinite integral #intsin^3(x)*cos^2(x)dx# ? How do I evaluate the indefinite integral #intsin^6(x)*cos^3(x)dx# ? How do I evaluate the indefinite integral #intcos^5(x)dx# ? How do I evaluate the indefinite integral #intsin^2(2t)dt# ? How do I evaluate the indefinite integral #int(1+cos(x))^2dx# ? How do I evaluate the indefinite integral #intsec^2(x)*tan(x)dx# ? How do I evaluate the indefinite integral #intcot^5(x)*sin^4(x)dx# ? How do I evaluate the indefinite integral #inttan^2(x)dx# ? How do I evaluate the indefinite integral #int(tan^2(x)+tan^4(x))^2dx# ? How do I evaluate the indefinite integral #intx*sin(x)*tan(x)dx# ? See all questions in Integrals of Trigonometric Functions Impact of this question 32532 views around the world You can reuse this answer Creative Commons License