What is #int_-oo^oo (e^x)/((e^(2x))+3) dx#?

1 Answer
Mar 24, 2016

#pi/sqrt3#

Explanation:

#int_-oo^oo e^x/(e^(2x)+3)dx=#

Using trigonometric substitution
#e^x=sqrt3tany#
#e^x*dx=sqrt3sec^2y*dy#

Since #tany=e^x/sqrt3#, when
#x->-oo# => #tany -> -oo# => #y->(-pi/2)^"+"#
#x->oo# => #tany -> oo# => #y->(pi/2)^"-"#

So the expression becomes

#=int_((-pi/2)^"+")^((pi/2)^"-") (sqrt3sec^2y)/(3tan^2y+3)dy=int_((-pi/2)^"+")^((pi/2)^"-") (sqrt3cancel(sec^2y))/(3cancel(sec^2y))dy#
#=(y/sqrt3)|_((-pi/2)^"+")^((pi/2)^"-")#
#=1/sqrt3[pi/2-(-pi/2)]=pi/sqrt3#