What is #int_-oo^oo (e^x)/((e^(2x))+3) dx#?
1 Answer
Mar 24, 2016
Explanation:
Using trigonometric substitution
Since
So the expression becomes
#=int_((-pi/2)^"+")^((pi/2)^"-") (sqrt3sec^2y)/(3tan^2y+3)dy=int_((-pi/2)^"+")^((pi/2)^"-") (sqrt3cancel(sec^2y))/(3cancel(sec^2y))dy#
#=(y/sqrt3)|_((-pi/2)^"+")^((pi/2)^"-")#
#=1/sqrt3[pi/2-(-pi/2)]=pi/sqrt3#