Using the limit definition, how do you find the derivative of #f(x) = 3x^2 + 8x + 4 #?
1 Answer
Explanation:
The limit definition of the derivative states that for a function
#f'(x)=lim_(hrarr0)(f(x+h)-f(x))/h#
So, when
Applying the limit definition, we obtain
#f'(x)=lim_(hrarr0)(3(x+h)^2+8(x+h)+4-(3x^2+8x+4))/h#
Find
#f'(x)=lim_(hrarr0)(3(x^2+2hx+h^2)+8(x+h)+4-3x^2-8x-4)/h#
Distribute the
#f'(x)=lim_(hrarr0)(3x^2+6hx+3h^2+8x+8h+4-3x^2-8x-4)/h#
Cancel all like terms.
#f'(x)=lim_(hrarr0)(color(red)(cancel(color(black)(3x^2)))+6hx+3h^2color(blue)(cancel(color(black)(+8x)))+8hcolor(green)(cancel(color(black)(+4)))color(red)(cancel(color(black)(-3x^2)))color(blue)(cancel(color(black)(-8x)))color(green)(cancel(color(black)(-4))))/h#
#f'(x)=lim_(hrarr0)(6hx+3h^2+8h)/h#
Divide
#f'(x)=lim_(hrarr0)6x+3h+8#
To evaluate the limit, plug in
#f'(x)=6x+3(0)+8#
#f'(x)=6x+8#