How do you solve #4^x * 5^(4x+3) = 10^(2x+3)#?
2 Answers
Explanation:
#4^x*5^(4x+3)=10^(2x+3)#
#log(4^x*5^(4x+3))=log(10^(2x+3))#
#log(4^x)+log(5^(4x+3))=log(10^(2x+3))#
#xlog(4)+(4x+3)log(5)=(2x+3)log(10)#
#xlog(4)+4xlog(5)+3log(5)=2xlog(10)+3log(10)#
#xlog(4)+4xlog(5)-2xlog(10)=3log(10)-3log(5)#
#x(log(4)+4log(5)-2log(10))=3log(10)-3log(5)#
#x=(3log(10)-3log(5))/(log(4)+4log(5)-2log(10))#
#color(green)(|bar(ul(color(white)(a/a)x~~0.65color(white)(a/a)|)))#
Explanation:
Dividing both sides by
Taking
Dividing both sides by