#f(x)=sqrt(x-3)#
#f'(x)=lim_(h->0)(sqrt(x+h-3)-sqrt(x-3))/h=#
#=lim_(h->0)((sqrt(x+h-3)-sqrt(x-3))*(sqrt(x+h-3)+sqrt(x-3)))/(h(sqrt(x+h-3)+sqrt(x-3)))=#
#=lim_(h->0)(sqrt(x+h-3)^2-sqrt(x-3)^2)/(h(sqrt(x+h-3)+sqrt(x-3)))=#
#=lim_(h->0)(x+h-3-x-3)/(h(sqrt(x+h-3)+sqrt(x-3)))=#
#=lim_(h->0)h/(h(sqrt(x+h-3)+sqrt(x-3)))=#
#=lim_(h->0)cancel(h)/(cancel(h)(sqrt(x+h-3)+sqrt(x-3)))=#
#=lim_(h->0)1/((sqrt(x+h-3)+sqrt(x-3)))=#
#=1/((sqrt(x+0-3)+sqrt(x-3)))=1/(sqrt(x-3)+sqrt(x-3))=#
#=1/(2sqrt(x-3))#