How do you find f'(x) using the definition of a derivative #f(x) =sqrt(x−3)#?

1 Answer
Mar 28, 2016

Just take advantage of the #a^2-b^2=(a-b)(a+b)#

Answer is:

#f'(x)=1/(2sqrt(x-3))#

Explanation:

#f(x)=sqrt(x-3)#

#f'(x)=lim_(h->0)(sqrt(x+h-3)-sqrt(x-3))/h=#

#=lim_(h->0)((sqrt(x+h-3)-sqrt(x-3))*(sqrt(x+h-3)+sqrt(x-3)))/(h(sqrt(x+h-3)+sqrt(x-3)))=#

#=lim_(h->0)(sqrt(x+h-3)^2-sqrt(x-3)^2)/(h(sqrt(x+h-3)+sqrt(x-3)))=#

#=lim_(h->0)(x+h-3-x-3)/(h(sqrt(x+h-3)+sqrt(x-3)))=#

#=lim_(h->0)h/(h(sqrt(x+h-3)+sqrt(x-3)))=#

#=lim_(h->0)cancel(h)/(cancel(h)(sqrt(x+h-3)+sqrt(x-3)))=#

#=lim_(h->0)1/((sqrt(x+h-3)+sqrt(x-3)))=#

#=1/((sqrt(x+0-3)+sqrt(x-3)))=1/(sqrt(x-3)+sqrt(x-3))=#

#=1/(2sqrt(x-3))#