How do you find the derivative of #(cos^2(t) + 1)/(cos^2(t))#?
1 Answer
Mar 30, 2016
Explanation:
Try to simplify the expression.
#frac{cos^2(t)+1}{cos^2(t)} = 1 + sec^2(t)#
Next, let
#frac{"d"u}{"d"t} = sec(t)tan(t)#
So,
# 1 + sec^2(t) = 1 + u^2#
Now, differentiate using the chain rule.
#frac{"d"}{"d"t}(1+u^2) = frac{"d"}{"d"u}(1+u^2) * frac{"d"u}{"d"t}#
#= 2u * sec(t)tan(t)#
#= 2sec(t) * sec(t)tan(t)#
#= 2sec^2(t)tan(t)#
#= frac{2sin(t)}{cos^3(t)}#