How do you find the derivative of #f(x) = 1/sqrt(2x-1)# by first principles?

2 Answers
Mar 30, 2016

derivative of function to a power #-1/2 2(2x-1)^(-1/2-1)#

Explanation:

#f(x) = (2x-1)#
You want the derivative of f to the power #-1/2#
Chain rule
#-1/2 2(2x-1)^(-1/2-1)#

The factor 2 comes from the derivative of f itself

Mar 30, 2016

Use limit definition of derivative to find:

#f'(x) = -(2x-1)^(-3/2)#

Explanation:

#f(x) = 1/sqrt(2x-1)#

#f'(a) = lim_(h->0) (f(a+h) - f(a))/h#

#=lim_(h->0) (1/sqrt(2a+2h-1) - 1/sqrt(2a-1))/h#

#=lim_(h->0) (sqrt(2a-1)-sqrt(2a+2h-1))/(h sqrt(2a+2h-1) sqrt(2a-1))#

#=lim_(h->0) ((sqrt(2a-1)-sqrt(2a+2h-1))(sqrt(2a-1)+sqrt(2a+2h-1)))/(h sqrt(2a+2h-1) sqrt(2a-1) (sqrt(2a-1)+sqrt(2a+2h-1)))#

#=lim_(h->0) ((2a-1)-(2a+2h-1))/(h sqrt(2a+2h-1) sqrt(2a-1) (sqrt(2a-1)+sqrt(2a+2h-1)))#

#=lim_(h->0) (-2h)/(h sqrt(2a+2h-1) sqrt(2a-1) (sqrt(2a-1)+sqrt(2a+2h-1)))#

#=lim_(h->0) (-2)/(sqrt(2a+2h-1) sqrt(2a-1) (sqrt(2a-1)+sqrt(2a+2h-1)))#

#=(-2)/(sqrt(2a-1) sqrt(2a-1) (sqrt(2a-1)+sqrt(2a-1)))#

#=(-1)/((2a-1)^(3/2))#

#=-(2a-1)^(-3/2)#

So:

#f'(x) = -(2x-1)^(-3/2)#