What is the distance between the following polar coordinates?: # (7,(5pi)/4), (2,(9pi)/8) #

2 Answers
Apr 4, 2016

#P_1P_2 = sqrt(53-28cos((pi)/8)) ~~5.209#

Explanation:

#P_1P_2 = sqrt(r_1^2+r_2^2-2r_1r_2cos(theta_2-theta_1))#
#r_1 = 7, theta_1 =(5pi)/4;r_2 =2, theta_2 =(9pi)/8#
#P_1P_2 = sqrt(7^2+2^2-2*7*2cos((9pi)/8-(5pi)/4))#
#P_1P_2 = sqrt(49+4-28cos(-(pi)/8)#
#P_1P_2 = sqrt(53-28cos((pi)/8)) ~~5.209#

Apr 4, 2016

#s~=5,27#

Explanation:

#r_1=7#
#r_2=2#
#theta_1=(5pi)/4#
#theta_2=(9pi)/8#
#theta_2-theta_1=(9pi)/8-(5pi)/4=(9pi-10pi)/8=-pi/8#

#cos(-pi/8)=0,9#

#s=sqrt(r_1^2+r_2^2-2*r_1*r_2*cos(theta_2-theta_1))#

#s=sqrt(7^2+2^2-2*7*2*0,9)#

#s=sqrt(49+4-28*0,9)#

#s=sqrt(53-25.2)#

#s=sqrt(27,8)#
#s~=5.27#