How do I find the derivative of #g(x)=ln(ln(ln(f(x))))#?
2 Answers
Since
Explanation:
The chain rule, as it applies to the function
#d/dxln(color(red)u)=1/color(red)u*(color(blue)dcolor(red)u)/color(blue)dx#
We must start with the outermost
#g'(x)=d/dxln(color(red)ln(ln(f(x))))=1/color(red)ln(ln(f(x)))*color(blue)(d/dx)color(red)(ln(ln(f(x)))#
Reapplying the rule to the new derivative, we see that
#d/dxln(color(red)ln(f(x)))=1/color(red)ln(f(x))*color(blue)(d/dx)color(red)(ln(f(x))#
Thus,
#g'(x)=1/ln(ln(f(x)))*1/ln(f(x))*d/dxln(f(x))#
For the final time, find a last natural logarithm derivative:
#d/dxln(color(red)f(x))=1/color(red)f(x)*color(blue)(d/dx)color(red)(f(x)#
#=1/f(x)*f'(x)#
All together, we see that
#g'(x)=1/ln(ln(f(x)))*1/ln(f(x))*1/f(x)*f'(x)#
#=(f'(x))/(f(x)*ln(f(x))*ln(ln(f(x))))#