How do you simplify #((6x^4y^8)^3)/(4x^4y^10)#?

4 Answers
Apr 6, 2016

#54x^8y^14#

Explanation:

#((6x^4y^8)^3)/(4x^4y^10)#

#color(white)("XXX")=6^3/4 * ((x^4)^3)/(x^4) * ((y^8)^3)/(y^10)#

#color(white)("XXX")=(6*cancel(6)^3*cancel(6)^3)/(cancel(4)_(cancel(2)_1)) * (x^4)^2/1 * (y^24)/y^10#

#color(white)("XXX")=54x^8y^14#

Apr 6, 2016

# 54x^8y^14#

Explanation:

Write as #(6^3xxx^(4xx3)xxy^(8xx3))/(4xxx^4xxy^10)#

#=> 216/4 xx x^12/x^4xxy^24/y^10#

#=> 54x^8y^14#

Apr 6, 2016

#54x^8y^14#

Explanation:

#color(blue)((6x^4y^8)^3/(4x^4y^10)#

First simplify #(6x^4y^8)^3#

Use the exponental property

#color(brown)((xy)^z=x^zy^z#

So,

#rarr(6x^4y^8)^3=(6x^4)^3(y^8)^3#

Remember

#color(purple)((6x^4)^3=(6x^4)(6x^4)(6x^4)#

#color(purple)((y^8)^3=(y^8)(y^8)(y^8)#

#rarr216x^12y^24#

Then solve for the question

#rarr(216x^12y^24)/(4x^4y^10)#

And also remind that

#color(brown)(x^y/x^z=x^(y-z)#

#rarr(cancel216^54x^cancel12y^cancel24)/(cancel4^1x^cancel4y^cancel10)#

#color(green)(rArr54x^8y^14#

Apr 6, 2016

# 54x^8y^14 #

Explanation:

Using the following #color(blue)" rules of exponents "#

#• (a^m)^n = a^(mxxn) = a^(mn) #

#• (a^m b^p)^n = a^(mn) b^(pn) " etc. " #

hence: #(6x^4y^8) = 6^(1xx3)x^(4xx3)y^(8xx3) = 6^3x^12y^24 =216x^12y^24#
#"-------------------------------------------------------------------"#
#• (a^m)/(a^n) = a^(m-n) #
#"----------------------------------------------------------"#

hence: # (216x^12y^24)/(4x^4y^10) #

# = 216/4 xxx^12 /x^4 xxy^24/y^10 = 54xxx^(12-4)xxy^(24-10)#

# = 54x^8y^14 #