Is #f(x) =cotx-cosx# concave or convex at #x=pi/3#?

1 Answer
Apr 8, 2016

#f(pi/3)>0=>"the function is concave at " x=pi/3 #

Explanation:

  • #f'(x)=-csc^2x+sinx#
    #f'(x)=0=>-csc^2x+sinx=0#
    #sinx=csc^2x#
    #sinx=1/sin^2x=>sin^3x=1#
    #sinx=1=>x=pi/2#
    :. the function has a local maxima/minima at #x=pi/2#

  • #f(pi/3)=cot(pi/3)-cos(pi/3)=0.077#
    #f(pi/3)>0=>"the function is concave at " x=pi/3 #

  • If you check the graph
    #pi/2-=1.571=>pi/3-=1.05#
    graph{cotx-cosx [-0.706, 1.902, -0.256, 1.048]}