How do you differentiate #f(x)= (x^2-x+2)/ (x- 7 )# using the quotient rule?

1 Answer
Apr 9, 2016

#f'(x)=1-44/(x-7)^2#

Explanation:

The quotient rule states that
#d/dx(u/v)=(u'v-uv')/v^2#

In our case, we have
#u=x^2-x+2->u'=2x-1#
#v=x-7->v'=1#

Applying the power rule and doing some algebra,
#f'(x)=((x^2-x+2)'(x-7)-(x^2-x+2)(x-7)')/(x-7)^2#
#color(white)(XX)=((2x-1)(x-7)-(x^2-x+2))/(x-7)^2#
#color(white)(XX)=(2x^2-15x+7-x^2+x-2)/(x-7)^2#
#color(white)(XX)=(x^2-14x+5)/(x-7)^2#
#color(white)(XX)=(x^2-14x+49-44)/(x-7)^2#
#color(white)(XX)=((x-7)^2-44)/(x-7)^2#
#color(white)(XX)=(x-7)^2/(x-7)^2-44/(x-7)^2#
#color(white)(XX)=1-44/(x-7)^2#