How do you factor #x^4 + 8x^3 - 2x^2 - 16x#?
1 Answer
Apr 9, 2016
#x^4+8x^3-2x^2-16x=x(x-sqrt(2))(x+sqrt(2))(x+8)#
Explanation:
First note that all of the terms are divisible by
#x^4+8x^3-2x^2-16x#
#=x(x^3+8x^2-2x-16)#
#=x((x^3+8x^2)-(2x+16))#
#=x(x^2(x+8)-2(x+8))#
#=x(x^2-2)(x+8)#
#=x(x-sqrt(2))(x+sqrt(2))(x+8)#