How do you find the slope of (-2, 5) and (-2, 8)?

2 Answers
Apr 10, 2016

#slope=oo#

Explanation:

#P_1=(-2,5)" the point of " P_1#
#P_2=(-2,8)" the point of "P_2#

#slope=(P_"2y"-P_"1y")/(P_"2x"-P_"1x")#

#slope=(8-5)/(-2-(-2))#

#slope=3/0#

#slope=oo#

Apr 10, 2016

Slope of line joining #(-2,5)# and #(-2,8)# is #oo# i.e. it is perpendicular to #x#-axis.

Explanation:

Slope of line joining #(x_1,y_1)# and #(x_2,y_2)# is given by

#(y_2-y_1)/(x_2-x_1)#

Hence slope of line joining #(-2,5)# and #(-2,8)# is

#(8-5)/((-2)-(-2))=3/(-2+2)=3/0=oo#

Hence, slope of line joining #(-2,5)# and #(-2,8)# is #oo# i.e. it is perpendicular to #x#-axis.