What is the equation of the tangent line of #y=(x^2-x)^2# at #x=-4#?

1 Answer
Apr 10, 2016

#232x+y=-528#

Explanation:

#y=(x^2-x)^2#
#rarr y=x^4-2x^3+x^2#

#y_(x=-4)=((-4)^2-(-4))^2 = (16+4)^2=20^2=400#
giving the point #(-4,400)#

The general slope is given by the derivative:
#(d y)/(d x) = 4x^3-6x+2x#

At #x=-4#, the slope becomes
#(d y_(x=-4))/(d x) = 4xx(-4)^3-6xx(-4)#
#color(white)("XXX")=4xx(-64)+4xx(6)#
#color(white)("XXX")=4xx(-64+6)#
#color(white)("XXX")=4xx(-58)#
#color(white)("XXX")=-232#

Using the slope formula for the tangent
#(y-400)/(x-(-4))=-232#

#y-400 = -232(x+4)#

#y-400 = -232x-928#

#232x+y=-528#