#suma_nx^(n-1)#, through n = 1, 2, 3.., with #a_1=1 and a_n=-2((n+2)/n)a_n-1#, n=2, 3, 4,..., for #|x| < 1/2#.
Explanation:
Use #(1+kx)^(-m)=1-m(kx)/1!+m(m+1)(kx)^2/(2!)+...+(-1)^(n-1)(m(m+1)(m+2)...(m+n-1))(kx)^n/(n!)+...#, for #|kx| < 1#. #=sum a_nx^(n-1)#, where# a_1=1 and a_n=-k((m+n-1)/n)a_(n-1)#