What is the limit as #x -> ∞# of #e^(-2x)cosx#?

1 Answer

#0#

Explanation:

Remember that

#-1<=cosx<=1=>-e^(-2x)<=e^(-2x)*cosx<=e^(-2x)#

Hence

#lim_(x->oo)-e^(-2x)<=lim_(x->oo)e^(-2x)cosx<=lim_(x->oo)e^(-2x)#

But #lim_(x->oo)-e^(-2x)=lim_(x->oo)e^(-2x)=0#

Hence

#lim_(x->oo)e^(-2x)cosx=0#