How do you find the vertex and the intercepts for # -3x^2 - 3x + 1#?
1 Answer
Apr 17, 2016
Vertex
Y-intercept
#(1, 0)#
X-Intercepts
#((3+sqrt(21))/(-6), 0)#
#((3-sqrt(21))/(-6), 0)#
Explanation:
Given -
#y= -3x^2-3x+1#
Find the vertex.
x- co-ordinate of the vetex
#x=(-(-b))/(2a)=(-(-3))/(2 xx (-3))=3/(-6)=(-1)/3#
Y-co-ordinate
#y=-3((-1)/3)-3((-1)/3)+1#
#y=-3(1/9)+3/3+1#
#y=-1/3+1+1#
#y=5/3#
Vertex
Find Intercepts
Y- intercept at
#y=-3(0)-3(0)+1#
#(1, 0)#
X Intercept, at
#-3x^2-3x+1=0#
#x=((-b)+-sqrt((-b)^2-(4ac)))/(2a)#
#x=((-(-3))+-sqrt((-3)^2-(4 xx(-3)xx1)))/(2 xx(-3))#
#x=(3+-sqrt(9-(-12)))/(-6)#
#x=(3+-sqrt(21))/(-6)#
#((3+sqrt(21))/(-6), 0)#
#((3-sqrt(21))/(-6), 0)#