How do you find the vertex and the intercepts for # -3x^2 - 3x + 1#?

1 Answer
Apr 17, 2016

Vertex #((-1)/3, 5/3)#

Y-intercept

#(1, 0)#

X-Intercepts

#((3+sqrt(21))/(-6), 0)#
#((3-sqrt(21))/(-6), 0)#

Explanation:

Given -

#y= -3x^2-3x+1#

Find the vertex.

x- co-ordinate of the vetex

#x=(-(-b))/(2a)=(-(-3))/(2 xx (-3))=3/(-6)=(-1)/3#

Y-co-ordinate

#y=-3((-1)/3)-3((-1)/3)+1#
#y=-3(1/9)+3/3+1#
#y=-1/3+1+1#
#y=5/3#

Vertex #((-1)/3, 5/3)#

Find Intercepts

Y- intercept at #x=0#

#y=-3(0)-3(0)+1#

#(1, 0)#

X Intercept, at #(y=0)#

#-3x^2-3x+1=0#

#x=((-b)+-sqrt((-b)^2-(4ac)))/(2a)#
#x=((-(-3))+-sqrt((-3)^2-(4 xx(-3)xx1)))/(2 xx(-3))#
#x=(3+-sqrt(9-(-12)))/(-6)#
#x=(3+-sqrt(21))/(-6)#
#((3+sqrt(21))/(-6), 0)#
#((3-sqrt(21))/(-6), 0)#