How do you solve #14^(x+1) = 36#?

1 Answer
Apr 19, 2016

Take the logarithm of each side. A logarithm rule lets us take the exponent outside of the logarithm.

Explanation:

#14^{x+1}=36#

#ln(14^{x+1})=ln(36)#

#(x+1)*ln(14)=ln(36)#

#(x+1)=ln(36)/{ln(14)}#

#x=ln(36)/{ln(14)}-1#

#x\approx 0.357878#

Substitute #x# into the problem to check the answer.