How do you differentiate #f(x)= ( x + 1 )/ ( x - 6)# using the quotient rule?

1 Answer

#f' (x)=(-7)/(x-6)^2#

Explanation:

Use the formula #d/dx(u/v)=(v*d/dx(u)-u*d/dx(v))/v^2#

Given #f(x)=(x+1)/(x-6)#

Let #u=(x+1)# and #v=(x-6)#

By the formula

#d/dx(u/v)=(v*d/dx(u)-u*d/dx(v))/v^2#

#d/dx((x+1)/(x-6))=((x-6)*d/dx(x+1)-(x+1)*d/dx(x-6))/(x-6)^2#

#d/dx((x+1)/(x-6))=((x-6)(1+0)-(x+1)(1-0))/(x-6)^2#

#d/dx((x+1)/(x-6))=((x-6)-(x+1))/(x-6)^2=(x-6-x-1)/(x-6)^2#

#d/dx((x+1)/(x-6))=(-7)/(x-6)^2#

Second solution #2, Just to check the above solution:

Simplify the given first so that

#f(x)=(x+1)/(x-6)=1+7/(x-6)=1+7(x-6)^-1#

differentiate

#f(x)=1+7(x-6)^-1#

#f' (x)=0+7*(-1)*(x-6)^(-1-1)*d/dx(x-6)#

#f' (x)=-7(x-6)^-2#

#f' (x)=(-7)/(x-6)^2#

God bless....I hope the explanation is useful.